Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

¸®µµÄ«Àΰú pH°¡ »ïÂ÷½Å°æÀý¼¼Æ÷ÀÇ tetrodotoxin-ÀúÇ×¼º ¼Òµð¿òÀü·ù¿¡ ¹ÌÄ¡´Â ¿µÇâ

EFFECTS OF LIDOCAINE AND pH ON THE TETRODOTOXIN-RESISTENT SODIUM CURRENTS FROM RAT TRIGEMINAL ROOT GANGLION NEURONS

´ëÇѱ¸°­¾Ç¾È¸é¿Ü°úÇÐȸÁö 1998³â 24±Ç 3È£ p.330 ~ 345
¼Ò¼Ó »ó¼¼Á¤º¸
ÀÌ»óö/Seon-Kyung Cho Á¶¼±°æ/±è¿©°©/±è¿©°©/·ùµ¿¸ñ/±èÇüÂù/À̹é¼ö/À±¿Áº´/ÁøÅÃÇö/Yeo-Gab Kim/Hyung Chan Kim/Sang-Chull Lee/Yeo-Gab Kim/Dong-Mok Ryu/Baek-Soo Lee/Ok-Byung Yoon/Taek-Hyun Jin

Abstract

V.°á ·Ð
±¸°­¾Ç¾È¸é¿µ¿ªÀÇ ¿°Áõ¼º Åë°¢°ú¹ÎÀÇ ±âÀü°ú ¿°Áõ½Ã ±¹¼Ò¸¶ÃëÁ¦ ¸®µµÄ«ÀÎÀÇ ¸¶ÃëÈ¿°ú °¨
¼Ò±âÀüÀ» ±Ô¸íÇϱâ À§ÇÏ¿© ¿°Áõ»óÅ¿¡¼­ µ¿ÅëÀÇ Àü´Þ¿¡ Áß¿äÇÑ ½ÅÈ£·Î ¿¹»óµÇ´Â TFX-ÀúÇ×
¼º ¼Òµð¿òÅë·Î¿¡ ¹ÌÄ¡´Â pH¿Í IdocaineÀÇ È¿°ú¸¦ ÈòÁã »ïÂ÷½Å°æÀý ´º·Ð¿¡¼­ whole-cell
patch clamp ¹æ¹ýÀ» ÅëÇØ Á¶»çÇÑ ¹Ù, ´ÙÀ½°ú °°Àº °á°ú¸¦ ¾ò¾ú´Ù.
1. ¼º¼÷ÇÑ ÈòÁãÀÇ »ïÂ÷½Å°æÀý¼¼Æ÷¿¡´Â TTX¿¡ ´Ù¸¥ ¹Î°¨¼ºÀ» º¸ÀÌ´Â µÎ °¡Áö Àü·ù,Áï
TFX-¹Î°¨¼º Àü·ù¿Í TFX-ÀúÇ×¼º Àü·ù°¡ Á¸ÀçÇÏ¿´´Ù.
2. TTX-ÀúÇ×¼º ¼Òµð¿òÀü·ù´Â ¼¼Æ÷¿Ü pHÀÇ º¯È­¿¡ µû¶ó ±× Å©±â¿Í Àü·ù-Àü¾Ð °ü°è°¡ À¯
ÀÇÇÏ°Ô º¯È­µÇ¾úÀ¸¸ç, ¼¼Æ÷¿Ü pH°¡ ³·¾ÆÁö¸é Àü·ùÀÇ Å©±â´Â °¨¼ÒÇÏ°í È°¼ºÈ­¿¡ ´õ Å«
Àü¾ÐÀÌ ÇÊ¿äÇÏ¿´´Ù.
3. ¼¼Æ÷¿Ü pHÀÇ º¯È­´Â TTX-ÀúÇ×¼º ¼Òµð¿òÅë·ÎÀÇ È°¼ºÈ­¿Í ºñÈ°¼ºÈ­ Àü¾ÐÀÇÁ¸¼º¿¡µµ
¿µÇâÀ» ¹ÌÃÄ, ¼¼Æ÷¿Ü pH°¡ ³·¾ÆÁö¸é È°¼ºÈ­¿Í ºñÈ°¼ºÈ­ °î¼±ÀÌ ÀúºÐ±Ø ¹æÇâÀ¸·Î À̵¿
µÇ¾ú´Ù.
4. ±¹¼Ò¸¶ÃëÁ¦ÀÎ ¸®µµÄ«ÀÎÀº ¿ë·® ÀÇÁ¸ÀûÀ¸·Î TTX-ÀúÇ×¼º ¼Òµð¿òÀü·ù¸¦ ¾ïÁ¦ÇÏ¿´À¸¸ç,
pH°¡ ³·¾ÆÁú¼ö·Ï Â÷´ÜÈ¿°ú°¡ ³·¾ÆÁö´Â °ÍÀ¸·Î ³ªÅ¸³µ´Ù
5. ¸®µµÄ«ÀÎÀº TTX-ÀúÇ×¼º ¼Òµð¿òÅë·ÎÀÇ ºñÈ°¼ºÈ­ °î¼±À» 20 mY °¡·® °úºÐ±Ø ¹æÇâÀ¸·Î
À̵¿½ÃÄ×´Ù.
6. ¸®µµÄ«ÀÎÀÌ TTX-ÀúÇ×¼º ¼Òµð¿òÅë·ÎÀÇ ºñÈ°¼ºÈ­¿¡ ¹ÌÄ¡´Â ¿µÇâÀº ¼¼Æ÷¿Ü pÚì(¹Ý) 6.3,
pH 8.3¸ðµÎ¿¡¼­ pH 7.3¿¡ ºñÇØ Å©°Ô °¨¼ÒÇÏ¿´´Ù.
7. ¼¼Æ÷¿Ü PH 8.3 ÀÏ ¶§ 0.1mM ¸®µµÄ«ÀÎÀ» Àû¿ë½Ã ¸®µµÄ«ÀÎÀ» °¡ÇÏÁö ¾ÊÀº »óÅÂÀÇ ¼¼Æ÷
¿Ü pH 7.3ÀÏ ¶§¿¡ ºñÇÏ¿© -20mV ÀÌ»ó ºñÈ°¼ºÈ­ °î¼±ÀÌ °úºÐ±Ø ¹æÇâÀ¸·Î À̵¿ÇÏ¿© ¼¼
Æ÷¿Ü pH 7.3¿¡¼­ 0.ImM ¸®µµÄ«ÀÎÀ» °¡ÇÏ¿´À» ¶§¿Í °á°úÀûÀ¸·Î À¯»çÇÑ ºñÈ°¼ºÈ­ Á¤µµ
¸¦ º¸¿´À¸³ª,¼¼Æ÷¿Ü pH 6.3¿¡¼­ ¸®µµÄ«ÀÎÀ» Àû¿ë½Ã ¸®µµÄ«ÀÎÀÌ °¡ÇÏ¿©ÁöÁö ¾ÊÀº ¼¼Æ÷
¿Ü pH 7.3ÀÏ ¶§¿Í ºñ±³ÇÏ¿© ºñÈ°¼ºÈ­ Àü¾ÐÀÇÁ¸¼º¿¡ ÀÖ¾î Å« Â÷À̸¦ º¸ÀÌÁö ¾Ê¾Ò´Ù.
ÀÌ»óÀ¸·Î ¸®µµÄ«ÀÎÀº TTX-ÀúÇ×¼º ¼Òµð¿òÅë·Î¸¦ Â÷´ÜÇÏ¿© ¼Òµð¿òÀÌ¿ÂÀÇ À¯ÀÔÀ» ¸·°í
TfX -ÀúÇ×¼º ¼Òµð¿òÅë·Î°¡ ºñÈ°¼ºÈ­»óÅ¿¡ µµ´ÞÇÒ È®·üÀ» Áõ°¡½ÃÄÑ Â÷´ÜÀÛ¿ëÀ» Áõ°­½ÃÅ°´Â
°ÍÀ¸·Î »ý°¢µÈ´Ù. ¼¼Æ÷¿Ü ¼ö¼ÒÀ̿³󵵰¡ Áõ°¡µÇ¸é TFX-ÀúÇ×¼º ¼Òµð¿òÅë·ÎÀÇ È°¼ºÈ­ ¿ªÄ¡
°¡ ³·¾ÆÁö°í Àü·ùÀÇ Å©±â°¡ °¨¼ÒµÇ¾î ½Å°æÀÇ ÈïºÐ¼ºÀÌ »ý¸®Àû pHÀÏ ¶§¿¡ ºñÇÏ¿© °¨¼ÒµÇ¾î
Áú °ÍÀ¸·Î »ý°¢µÇÁö¸¸, À̶§¿¡ ¸®µµÄ«ÀÎÀ» °¡ÇÏ¸é ¸®µµÄ«ÀÎÀÇ ÀÌ¿ÂÈ­ »óÅÂÀÇ Áõ°¡¿Í TFX-
ÀúÇ×¼º ¼Òµð¿òÅë·ÎÀÇ ºñÈ°¼ºÈ­ È®·üÀ» Áõ°¡½ÃÅ°´Â ÀÛ¿ëÀÌ Å©°Ô °¨¼ÒµÇ±â ¶§¹®¿¡ »ý¸®Àû PH
¿¡¼­ ¸®µµÄ«ÀÎÀ» °¡ÇÏ¿´À» ¶§¿¡ ºñÇÏ¿© ½Å°æÀÇ ÈïºÐ¼ºÀÌ ´õ¿í Áõ°¡µÇ¾îÁüÀ» ¾Ë ¼ö ÀÖ´Ù.
#ÃÊ·Ï#
The extracellular PH has been known to be lowered under the condition of chronic
inflammation, and the tetrodotoxin-resistant sodium currents(TTX-r INa )
is thought to responsible for the inflammatory pain. We investigated the effects of PH
and lidocaine on the TTX-r INa in sensory neurons derived from abolt
rat trigeminal root ganglion(TRG) using whole-cell patch clamp technique to evaluate
the underlying mechanisms of the poor analgesia following the administration of local
anesthetic solutions into or around the area of the of inflammation. The results are as
follows:
1. Two types of INa showing different sensitivity to TTX, TTX-sensitive
and TTX-resistant INa , were expressed in the rat TRG neurons.
2. The amplitude and the current-voltage(¥°-¥´) relationship of TTX-r INa
were significantly affected by the changes of extracellular pH. The acidification
of external pH reduced the current amplitude and shifted the ¥°-V relation to the
depolarizing directions.
3. The change of extracellular PH also affected the voltage-dependence of activation and
steady-state inactivation of TTX-r sodium channels. The voltage-dependence of the
channel shifted to a depolarizing direction by the elevated concentration of external
hydrogen ion.
4. Lidocaine suppressed TTX-r INa in a dose-dependent manner, and
inhibitory effect of lidocaine decresed as the external PH lowered.
5. Lidocaine significantly shifted the activation and steady-state inactivation curves of
TTX-r sodium channel to a hyperpolarizing direction by about -20 mV.
6. The effects of lidiocaine on TTX-r sodium channel producing an increase in the
probability of channel inactivation greatiy decreased when the external pH was changed
to 6.3 or 8.3
7. The 0.1mM lidocaine applied at PH 8.3 shifted the steady-state curve to a
hyperpolazizing direction by -20mV compared to that obtained at lidocaine-free pH 7.3
condition. In contrast, the steady-state inactivation curve obtained in the presence of 0.1
mM lidocaine at pH 6.3 614 not showed any significant difference to that obtained at
lldocaine-free pH 7.3 condition.
These results suggest that the inhibitory action of lidocaine on the TTX-r sodium
channel may be derived from the modificition of channel gating as well as blockade of
channel pore. The reduced extracellular PH may reduce the TTX-rINa
and increase the threshold for activation of TTX-r sodium channels. which may be
responsible for the decresed neuronal excitability in the acidified environment. In the
presence of lidocaine, however, the sensory neuron is thought to be more excitable in
the acidic condition than in physiological PH, which may be due to the decreased
lidocaine-induced inactivation of TTX-r sodoum channel as well as reduced amount of
hydrophobic neutral from of lidocaine in acidosis.

Å°¿öµå

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

  

µîÀçÀú³Î Á¤º¸

KCI
KoreaMed